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The performance of the complete active space second-order perturbation theory (CASPT2) to accurately predict
magnetic coupling in a wide series of molecules and solid state compounds has been established. It is shown
that CASPT2, based on a reference wave function that only includes the effects described by the Anderson
or Hay-Thibeault-Hoffmann model, correctly reproduces all experimental trends. For a complete quantitative
agreement with experiment (or with accurate results arising from the difference dedicated configuration
interaction method), it is necessary to include effects that go beyond the Anderson model in the reference
wave function. The CASPT2 method is computationally less demanding than CI based methods and, hence,
allows us to extend the study of magnetic coupling parameters to larger molecules or systems with elevated
spin moments. Moreover, CASPT2 provides a reliable and accurate alternative to density functional based
methods that require the use of a broken symmetry approach.

Introduction

The theoretical study of exchange interactions in molecular
complexes or solid state compounds has become a rapidly
expanding field over the past few years. In the first place,
theoretical investigations have been applied to interpret the vast
amounts of (new) experimental data related with, for example,
the antiferromagnetism in highTc superconductors,1 the design
of molecular magnets,2-5 or the magnetism of metal centers in
enzymes.6-8 Second, the developments in modern electronic
structure theory allowed theoreticians to construct accurate
computational schemes, which are indispensable for the study
of magnetic interactions because of the small energy differences
involved in such processes.

The roots of the theoretical investigations of the magnetic
interactions go back to the work of Anderson and Nesbet in
the late 1950s, who developed a framework in which (anti)-
ferromagnetism can be qualitatively understood.9-11 The mag-
netic coupling was interpreted as a sum of the direct exchange
K and the Anderson delocalization term. The first term arises
from the interaction between the mutual orthogonal open shell
or magnetic orbitals in a local representation and always results
in a ferromagnetic contribution. The second term arises from
the interaction of the neutral reference configuration with the
ionic ones, i.e., those configurations in which an electron is
transferred from one magnetic center to the other. This term
gives an antiferromagnetic contribution to the overall magnetic
interaction. The Anderson model has been proven to be very
successful in predicting the sign of the magnetic interaction but
is too crude a model to quantitatively reproduce the magnitude
of the magnetic coupling. Whereas the analysis of Anderson
and Nesbet was basically developed within the field of solid-
state magnetism, in the middle of the 1970s, Kahn and Briat12

and Hay, Thibeault, and Hoffmann (HTH)13 discussed the
equivalent of this qualitative model for molecular complexes.
From the HTH model, very valuable information about the
magnetostructural correlations can be derived, but it fails to give
quantitative results. Hence, a more quantitative description of
the magnetic coupling mechanisms is desirable to be able to

give reliable predictions of magnetic interactions of new and
potentially very interesting materials.

Ab initio electronic structure calculations provide a natural
approach to investigate the magnetic interactions in molecular
complexes or solid state compounds in a more detailed way.
Under the assumption of a common orbital part, the energy
eigenvalues of the total Hamiltonian can be directly mapped
onto the eigenvalues of the well-known Heisenberg Hamiltonian
for a two-center problem:Ĥ ) -JŜ1‚Ŝ2. This offers a way to
apply standard quantum chemical techniques for the calculation
of electronic energies to magnetic coupling problems. Early ab
initio calculations for KNiF3 by Wachters and Nieuwpoort
confirmed the ideas of the Anderson model.14 However, because
of the limited computational resources available at that time,
they could not go beyond this level. Almost 10 years later, an
important contribution to the field was made by de Loth and
co-workers.15 They described a computational scheme to
improve the Anderson or HTH model by second-order perturba-
tion theory, in which only those determinants that contribute to
the energy difference of two states of interest are included in
the first-order wave function. The relative importance of the
different second-order terms (kinetic exchange, double spin
polarization, charge transfer, etc.) were studied and compared
to the terms arising from the Anderson model.

The work of de Loth et al. initiated a research line aimed at
the development of an ab initio computational scheme that gives
an accurate description of the magnetism in molecular com-
plexes and solid-state compounds. In a study of the singlet-
triplet splitting of dichloro- and difluoro-bridged Cu(II) dimers,
Broer and Maaskant introduced the concept of treating the
determinants that contribute to the energy difference in a
variational way.16 This configuration interaction approach was
given a more firm basis by Miralles et al., who introduced the
basic concepts of the difference dedicated CI (DDCI) method.17,18

They derived a selection criterion based on a second-order
effective Hamiltonian and discussed the effect of the different
types of single and double excitations out of a complete active
space formed by the open-shell orbitals and unpaired electrons.
It was shown that a large part of the external determinants only
shift the diagonal matrix elements of the effective Hamiltonian* To whom correspondence should be addressed.
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and hence are irrelevant to the computation of the energy
difference. Over the past few years, this method has been shown
to perform extraordinarily well in the study of magnetic coupling
parameters in molecular complexes19-21 and solid-state com-
pounds.22-24 In the next section, we give a short outline of the
DDCI method and its different variants used nowadays.

A somewhat different strategy to improve the Anderson or
HTH model is supplied by unrestricted Hartree-Fock (UHF)
and density functional theory (DFT). Because it is in general
not possible to express the spin eigenfunctions with a single
Kohn-Sham determinant, the mapping procedure described
above for the spin-restricted ab initio methods cannot be applied.
However, the broken symmetry approach of Noodleman and
Davidson provides an alternative way to derive magnetic
coupling parameters.25-27 This approach relates the eigenvalues
of the Ising Hamiltonian to the energy eigenvalues of spin
symmetry broken solutions. The large advantage of DFT is that
it is computationally much less demanding than the DDCI
method mentioned above and, hence, can be applied to study
large molecular complexes without the need to approximate the
real structure by a model.28-32 On the other hand, there seems
to be no consensus about the details of the relation between the
magnetic coupling constantJ and the energy difference of the
spin symmetry broken states. A large amount of articles have
been published on this subject, and at least three slightly
different ways exist to perform the mapping.29,33-41

In this paper, we apply a computational scheme that avoids
the problems with the mapping procedures of the spin-
unrestricted methods but is not as computationally demanding
as the DDCI methods. For this purpose, we present the results
of the calculations of the magnetic coupling constants in a wide
variety of molecular complexes and solid-state compounds using
the complete active space second-order perturbation theory
(CASPT2) methodology developed by Andersson and co-
workers42,43 and extensively applied to study the spectroscopy
of organic and inorganic molecules in great detail.44-47 The
method takes a complete active space self-consistent field
(CASSCF) wave function that contains the essential physics as
zeroth-order wave function and estimates the remaining part of
the (mainly) dynamical electron correlation effects by second-
order perturbation theory. For magnetic problems, a typical
active space would contain the open-shell orbitals and the
unpaired electrons, i.e., including the effects described by the
Anderson model. In the subsequent CASPT2 step, all valence
electrons are correlated to account for the effects discussed by
de Loth et al. To obtain more reliable results, it is possible to
include some effects that go beyond the Anderson model in
the CASSCF wave function to ensure a variational and, hence,
more accurate treatment of such effects. Again, CASPT2
accounts for the remaining electron correlation effects but now
takes a much longer CASSCF wave function as reference.

The paper is organized as follows: in the subsequent section,
we give a short outline of the main points of the DDCI and
CASPT2 approaches. Thereafter, we compare the CASPT2
method to DDCI results and/or experimental data in three
different kind of systems: an extensive series of ionic insulators,
some molecular complexes, and a few biradicals. The systems
have been chosen to explore the whole range of magnetic
behavior exhibited by these three classes of compounds: from
strongly antiferromagnetic to ferromagnetic interactions, includ-
ing organic and inorganic molecules with different types of
magnetic orbitals (s-like or p-like versusd-like), interactions
between different transition metals with magnetic momentS
varying from 1/2 to 5/2 (Cr, Mn, Fe, Ni, and Cu), a range of

different geometries; and interactions with and without bridging
ligands. Each subsection first gives some information about the
material model, basis sets, and other computational details and
then discusses the results obtained. Finally, we summarize the
most important conclusions in the last section of the paper.

Computational Methods

DDCI. As already mentioned in the Introduction, the differ-
ence dedicated CI scheme is based on the understanding that
many external determinants contribute equally to the correlation
energy of the electronic states involved in the process under
study. Therefore, a selection is made and only those determinants
are included that contribute to the energy difference between
the states. First, an uncontracted list of determinants is con-
structed by single and double replacements from the determi-
nants in the reference space, usually a CAS that represents the
Anderson model. Thereafter, a selection is made based on
arguments from quasidegenerate second-order perturbation
theory. For a system with two unpaired electrons, it has been
proven that in case of a degenerate reference space only the
determinants|K〉 that fulfill the condition

(where |I〉 and |J〉 are two different determinants from the
reference space) contribute to the energy difference of the states
involved.48 It can be easily shown that this condition selects
determinants involving at most two orbitals outside the CAS.
The complete diagonalization of the resulting CI matrix is
usually referred to as DDCI2.

Although, for almost any real system, the selection condition
does not apply strictly, the DDCI2 method gives very reasonable
results for magnetic interaction problems. However, it has been
shown recently that adding some well-defined set of determi-
nants to the wave function gives an important contribution to
the energy difference between the states of interest.23,49 These
extra determinants involve at most three orbitals external to the
CAS; the resulting method is labeled DDCI3.

Calzado et al.49 and Cabrero et al.19 have recently analyzed
the effect of adding the extra determinants on top of DDCI2
and concluded that the main contribution arises from the
relaxation of the determinants connected to the ligand to
magnetic center charge-transfer (CT) excitations. These CT
excitations are already included in the DDCI2 wave function,
but their contribution remains rather small because the wave
function lacks flexibility to account for the large orbital
relaxation effects accompanying CT excitations.50-52 The inclu-
sion of single excitations with respect to these CT excitations
at the DDCI3 level lowers the CT excitations in energy and,
hence, largely enhances the contribution of these determinants
to the wave function. The DDCI3 calculations reported in this
paper have been performed with the CASDI suite of programs.53

CASPT2. The partition of the Hamiltonian proposed by
Møller and Plesset gives rise to a very successful and efficient
method to treat electron correlation effects in systems that can
be described by a single reference wave function. However, for
a multireference wave function, the Møller and Plesset division
can no longer be made, and an alternative choice ofĤ(0) is
needed. One such scheme is CASPT2. We will briefly resume
the most important definitions of the theory, but the reader is
referred to the original articles for a more extensive description
of the method.42,43,54The reference wave function is a CASSCF
wave function that accounts for the largest part of the nondy-

〈I|Ĥ(0)|K〉〈K|Ĥ(0)|J〉
E0 - EK

* 0 (1)
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namical electron correlation. The zeroth-order Hamiltonian is
defined as follows and reduces to the Møller and Plesset operator
in the limit of zero active orbitals:

where|0〉 is the CASSCF reference wave function andÊpq is
the usual excitation operators. Alternative formulations of the
zeroth-order Hamiltonian have been given by Andersson to treat
closed-shell-dominated and open-shell-dominated reference
wave functions in a more balanced way.54 In the con-
text of this work, we will apply the g1 correction toĤ(0) to cal-
culate the singlet-triplet splitting for some biradicals that have
a leading configuration of the singlet with closed shell character,
whereas the triplet state is characterized to a large extent with
an open shell configuration. Note that, for magnetic interactions
between localized spin moments, all states that arise from the
different spin couplings have open-shell character, and hence,
we will use the unmodifiedĤ(0) as given by eq 2 in these cases.

As in any perturbational scheme based on Fock-type zeroth-
order Hamiltonians, configurations can appear in the first-order
wave function with an expectation value ofĤ(0) that is very
close to (or even lower than) the expectation value of the
reference wave function. This can lead to very small (or even
negative) energy denominators both in the expressions for the
second-order correction to the energyE(2) and the coefficients
of the configurations in the first-order wave functionC(1) and
cause a breakdown of the perturbation treatment of the electron
correlation. In general, this problem does not appear for the
electronic states that are needed to compute the magnetic
coupling parameter. Nevertheless, we have found a breakdown
of the perturbation in one case, see the biradicals section. The
best way to solve this problem is to include the trouble-causing
configuration in the CASSCF wave function. However, it often
happens that the state that causes the breakdown does not have
a large interaction matrix element with the reference state, and
therefore, it is not very important to obtain a good estimate of
the second-order energy. On the basis of this observation, Roos
and Andersson introduced an alternative solution to the intruder
state problem, namely, the so-called level-shift technique.55

Here, all configurations in the first-order wave function are
shifted to higher energy by an arbitraryµ in this way avoiding
the destructive influence of the intruder state. Once the zeroth-
order Hamiltonian has been diagonalized, a correction is applied
for the appearance of the level shift in the denominators of the
expressions forE(2). This level shift method has been success-
fully applied to a wide variety of problems in the field of
spectroscopy56 and can be considered as a pragmatic solution
to the intruder state problem inherent to perturbation theory.
All CASSCF/CASPT2 calculations presented here have been
done with MOLCAS 4 (ref 57).

Results
Ionic Insulators. A crystal is a macroscopic object built from

a very large number of atoms, which makes a theoretical or
computational treatment of the electronic structure of the crystal
as a whole impossible. For this reason, it is inevitable to
introduce approximations in the calculational scheme. A very
natural simplification is the introduction of translational sym-
metry by imposing periodic boundary conditions, leading to the
band theory of electrons moving in a periodic potential. A
different approach is to model the crystal by a small number of
atoms of the real crystal and embed this so-called cluster in a
potential that mimics the rest of the crystal. This approximation

is known as the embedded cluster model approach, and the large
advantage of this method with respect to band structure
calculations is that the description of the electronic structure is
easily extended beyond the one-electron model by including
electron correlation effects with standard quantum chemical
methods, e.g., the ones discussed in the previous section. There
exists a substantial amount of evidence that modeling the crystal
with a relatively small cluster does not introduce serious artifacts
into the calculation of the magnetic interaction parameters. Both
the comparison with band structure calculations at the Hartree-
Fock level58-61 and the extension of the cluster with additional
magnetic centers62 show that a properly embedded cluster of
two magnetic centers extended with the ligands that complete
the metal coordination accurately models the crystal.

In the present study, we apply the embedded cluster approach
to calculate the magnetic interaction parameter with DDCI3 and
CASPT2 to transition-metal (TM) compounds that show a wide
variety of magnetic behavior. The series contains the cubic TM
monoxides MnO and NiO; the perovskites La2NiO4, La2CuO4,
K2NiF4, KNiF3, and K2FeF4; the distorted perovskites KCuF3

and K2CuF4; and the spin-chain compound Sr2CuO3. In all of
these compounds, magnetic interactions along a linear TM-
L-TM (L ) ligand; O or F) bond occur, and this magnetic
interaction is referred to asJ1. In addition, other important
interactions are found in some of the compounds considered
here. In particular, for NiO, we calculate the nearest neighbor
interactionJ2, which occurs along a Ni-O-Ni bond of 90°,
and for the spin-chain compound Sr2CuO3, we calculate the
interchain interactionJ⊥. This interaction is not mediated by a
ligand and is thus expected to be rather small.

Figure 1 shows the embedded TM2L11 cluster to calculateJ1

in NiO. This cluster is representative for the calculation ofJ1

in all compounds, except Sr2CuO3, for which a Cu2O7 cluster
is used.J2(NiO) is extracted from a Ni2O10 cluster, andJ⊥(Sr2-
CuO3) is extracted from a Cu2O8 cluster. The embedding of
these clusters is provided by a set of point charges that reproduce
the Madelung potential in the cluster region63 and a set of total
ion potentials (TIP’s) that account for the short-range repulsion
between the O2- or F- anions in the cluster and their nearest
neighbors.64 For all materials, the experimental geometry has
been used to construct the cluster model. In both the DDCI3
and CASPT2 calculations, we use one-electron basis sets of the

Figure 1. Ni2O11 cluster embedded in TIPs and point charges. Thick
lines connect cluster atoms, whereas thin lines connect point charges
and TIPs. Black large spheres are Ni ions, large light spheres represent
O, and dark gray spheres represent the Ni ions included in the cluster
with TIPs. The small dark and white spheres are positive or negative
point charges (not all charges are shown).

Ĥ(0) ) ∑
pqσ

fpqσÊpq with fpqσ ) -〈0|[[ Ĥ,âqσ
† ],âpσ]+|0〉 (2)
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atomic natural orbital (ANO) type. The final contracted basis
set has (5s, 4p, 3d) functions for the TM, (4s, 3p, 1d) for the
bridging ligands, and (3s, 2p) for the other ligands included in
the cluster model.65,66Previous applications have shown that a
further enlargement of these basis sets does not significantly
affect the calculatedJ values.67-69

We now turn to the discussion of the results in Table 1, which
lists CASSCF, CASPT2, and DDCI3J values. In the first place,
it can be readily seen that the CASSCF values obtained from
the small CAS, which is the ab initio equivalent of the Anderson
model, reproduce the experimentally observed trends. The sign
of the interaction is recovered in all cases, and the relative
magnitude of the interactions in the different compounds is also
reproduced. The only obvious disagreement with experiment
is the absolute magnitude of the interaction, which is far too
small in all cases. In line with the discussion of the external
electron correlation effects outlined above, CASPT2 and DDCI3
significantly improve the calculatedJ values. The comparison
of the DDCI3 values with experiment is (as expected)23,49,70

very satisfactory, and hence, the method can provide a quantita-
tive prediction ofJ for materials for which experimental data
is absent, scarce, or contradictory.24,70,71

On the other hand the CASPT2 values still show a significant
deviation from the experimental and/or DDCI3 values. It is clear
that the second-order treatment of the external correlation effects
largely improves the Anderson model, but some higher order
effects must be included in order to reproduce the DDCI3 values.
One way to do this is to go to higher-order perturbation theory,
e.g., by applying the CASPT3 method proposed by Werner.72

Alternatively, the active space can be extended to include the
higher order coupling between external determinants that is
missing in the CASPT2 based on the small CAS.73 The effect
of the ligand-to-metal CT excitations is accounted for more
accurately by adding the ligand orbitals involved in the
superexchange interaction to the active space. However, such
an active space does not provide any improvement of the
results,73 because of the very small interaction matrix elements
between the unrelaxed CT configurations and non-CT configu-
rations.52,69To supply the resulting wave function with enough
flexibility to account for the large orbital relaxation effects
accompanying these CT excitations,50-52 the active space is
further augmented with a set of virtual orbitals chosen according
to a well-defined physical criterion. For the interactions along
linear TM-L-TM bonds, the large active space simply contains
the magnetic orbitals centered on the metals, the ligand-2pσ
orbital, and for each occupied orbital a virtual orbital of the
same symmetry character. In the case of the 90° TM-L-TM
bond, the same procedure has been followed: first adding the

ligand-2px and ligand-2py orbitals to the active space and then
doubling it with the pertinent virtual orbitals. To obtain correctly
converged orbitals for the cuprates (copper oxides), it turned
out that the active space must be extended with the Cu-3dz2

orbitals and their correlating counterpart. The natural occupation
numbers of these orbitals in the final CASSCF wave function
remain close to 2 or 0, but their inclusion in the active space
greatly improves the convergence. Finally, note that the larger
active space in the calculation ofJ⊥(Sr2CuO3) only contains
the magnetic orbitals and the corresponding virtual orbitals
because of the lack of a bridging ligand in this case.

With this larger active space, we observe an increase in the
magnitude of the CASPT2 values compared to those obtained
with the smaller active space. However, these changes are rather
small for all compounds except for the cuprates, for which a
substantial improvement of the calculatedJ is observed. It is
well-known that the CT excitation from O2- to Cu2+ lies much
lower in energy than the corresponding excitation in the nickel
compounds or copper fluorides. Hence, it is not surprising that
the copper oxide compounds exhibit a stronger magnetic
coupling, which is only correctly reproduced by CASPT2 when
the reference wave function allows for an extensive treatment
of the instantaneous relaxation of the CT configurations. For
the Ni compounds and copper fluorides, these effects are less
important, and the difference between the CASPT2 results
obtained with the large CAS and those from the small CAS is
much smaller than for the cuprates.

For MnO and K2FeF4, the recipe of extending the CAS cannot
be applied because the small active space already contains a
large number of orbitals. Because of the high net spin moment
on these transition metals, all TM-3d orbitals need to be included
in the minimal CAS. The resulting active space of 10 orbitals
with 10 (Mn) or 12 (Fe) electrons is simply too large to be
duplicated. However, in these compounds, the contribution of
the CT excitations is expected to be at least as small as those
for the nickel compounds and copper fluorides.74 This explains
why a quantitative agreement with the experiment is already
found with the small CAS. Combined with the fact that the
DDCI3 selection criterion results in an unfeasible large CI wave
function, we conclude that the CASPT2 method is an interesting
alternative approach to study the magnetic interactions in
compounds containing magnetic centers withS > 1.

Molecular Complexes.The theoretical study of magnetic
interactions in molecular complexes makes it possible to access
information difficult to extract from the experiment. An interest-
ing example is the exploration of the magnetostructural cor-
relations of a molecule. To derive these correlations, it is
necessary to perform a whole series of calculations at different

TABLE 1: CASSCF, CASPT2, and DDCI3 Magnetic Coupling Parameters (in meV) for a Family of Ionic Insulatorsa

small CAS large CAS

compound CASSCF CASPT2 DDCI3 CASSCF CASPT2 exp. ref

MnO J1 -0.44 -1.31 -1.7 86, 87
K2FeF4 J1 -0.45 -1.04 -1.35 88, 89
KNiF3 J1 -2.51 -6.72 -7.61 -2.97 -6.99 -7.40 90
K2NiF4 J1 -2.70 -7.25 -7.65 -3.18 -7.53 -7.90/-9.15 91
KCuF3 J1 -7.05 -20.9 -28.8 -9.18 -22.8 -31.6/-33.8 92-94
K2CuF4 J1 0.33 0.65 2.07 0.59 0.74 1.41/1.83 95, 96
NiO J1 -4.99 -16.3 -16.4 -6.44 -17.7 -19 97, 98

J2 0.50 1.33 1.88 0.93 1.95 - -
La2NiO4 J1 -8.79 -26.4 -26.9 -11.5 -28.8 -31 99
La2CuO4 J1 -40.0 -113 -150 -67.9 -139 -128/-134 100-102
Sr2CuO3 J1 -44.4 -177 -246 -86.8 -260 -246 103, 104

J⊥ -0.02 -1.09 -0.44 -0.12 -2.00 - -
a The small CAS only contains the unpaired electrons and the magnetic orbitals localized on the metal centers. The large CAS extends the

smaller one with a set of occupied ligand orbitals and one virtual for each (singly or doubly) occupied orbital in the leading configuration state
function. Calculated values are compared to available experimental data (references for experimental data are given in the last column).
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geometries, and therefore, the computational method applied
should not only be very accurate but also rather efficient. To
investigate the performance of the CASPT2 method to extract
magnetostructural correlations, we have taken the widely studied
Cu2Cl6 molecule in a planar conformation in which two chlorine
atoms form a double bridge between the two coppers. We have
studied the correlation ofJ with variations in the bridging Cu-
Cl-Cu angleθ, keeping the Cu-Cl distances fixed. For this
purpose, two active spaces have been considered that are
constructed following the same procedure outlined for the
cuprates described above, i.e., two orbitals with two electrons
for the small CAS and 10 orbitals with 10 electrons for the
large CAS. For all Cl atoms in the molecule, a (5s, 4p, 1d)
contraction has been used, where the Cu basis is identical to
that used for the cuprates. The geometry of the molecule has
been optimized by CASSCF applying the small CAS.

Figure 2 compares the CASPT2 results to DDCI3, which we
consider to be our benchmark calculation. It is clear that the
small CAS curve (results marked with triangles) only provides
a qualitative indication of the magnetostructuralmagnetostruc-
tural correlations. The variation ofJ with θ is too small, which
results in a very flat curve. CASPT2 (open squares) clearly
enhances the dependency ofJ on θ, but the first-order wave
function is largely affected by intruder states for small angles.
These intruder states cannot be removed by the level shift
technique discussed in the previous section. However, the
DDCI3 curve (circles) is satisfactorily reproduced by CASPT2
based on the large CAS (crosses) over the whole interval ofθ,
providing a relatively cheap way to access the magnetostructural
correlations in medium sized molecules with a wave function
based method.

The second molecular system for which a comparison
between CASPT2 and DDCI3 has been made is the (NH3)3-
Cu-(µ-O)2-Cu-(NH3)3 model complex (see Figure 3; the
geometry has been taken from ref 75). In a DFT study of this
model, Ruiz et al. found that it exhibits a surprisingly strong
ferromagnetic coupling, and for this reason, it was proposed as
an interesting candidate for a building block in the construction
of new ferromagnetic materials.75 For this molecule, we establish
whether the CASPT2 method is able to reproduce such strong
ferromagnetic coupling, and we perform an explicit study of
the basis size dependency of the magnetic coupling parameter

calculated with this second-order perturbation theory scheme.
Table 2 compares the CASPT2 results with those obtained by
a DDCI3 calculation. We observe a similar behavior as for the
strongly antiferromagnetic couplings in the cuprates (cf. Table
1); CASPT2 based on the CAS small only qualitatively
reproduces the DDCI3 number, but the extension of the active
space in the preceding CASSCF calculation with ligand orbitals
and virtuals brings the two methods in quantitative agreement.
Furthermore, we observe a rather weak dependence on the size
of the basis set. The difference between basis A (triple-ú valence
(TZV) for Cu and O and double-ú valence (DZV) for the NH3
groups) and basis B (TZV+ polarization for Cu, O, and N and
DZV + polarization for H) only weakly affects the calculated
J values. Note that the DDCI3 calculation with the larger basis
becomes rather demanding, whereas the CASPT2 calculation
can be performed in a straightforward way.

Finally, we focus our attention on the magnetic interactions
in binuclear complexes containing metal centers with an elevated
spin moment, i.e.,S > 1. For this purpose, we have taken a
series of Cr(III) dimers with different bridging ligands. To
explore the possibilities of CASPT2 to predict the relative
strength of the magnetic interactions in these compounds, we
have selected three doubly bridged chromium dimers from a
study by Gafford et al.76 The general formula of these molecules
is tpma-Cr-(µ-R1)(µ-R2)-Cr-tpma, with tpma being tris(2-
pyridylmethyl)amine. We have studied the variants with a
double OH bridge, with an O and OH bridge, and finally the
combination of O with HCO2 as bridging ligands. Because these
molecules have rather voluminous ligands, a modeling has been
invoked for this part of the molecule to reduce the computational
cost. For this reason, the real tpma ligands have been replaced
by four NH3 groups. Geometries have been optimized at the
CASSCF level applying the minimal CAS. The geometries of
the Cr-(µ-R1)(µ-R2)-Cr fragments are in reasonable agreement
with the data given by Gafford et al. for the complete molecules.
Figure 4 shows the final structure for the (NH3)4-Cr-(µ-O)-
(µ-HCO2)-Cr-(NH3)4 molecule. In addition, we have calcu-
lated the magnetic interaction for the singly bridged Cr dimer
reported by Pedersen,77 which shows a much larger coupling
than the doubly bridged complexes.

The minimal CAS now contains the six unpaired electrons
(three per Cr atom) and six orbitals. The application of the
DDCI3 selection criterion results in a huge CI wave function

Figure 2. Variation of the magnetic coupling parameterJ in the Cu2-
Cl6 molecule with the bridging Cu-Cl-Cu angleθ. The triangles
represent the CASSCF results with the small CAS (two orbitals with
two electrons). The open circles give the CASPT2 results based on the
small CAS, the crosses correspond to those obtained with CASPT2
using the large CAS as reference wave function, and the filled circles
give the DDCI3 results.

Figure 3. (NH3)3-Cu-(µ-O)2-Cu-(NH3)3.

TABLE 2: Comparison of CASSCF, CASPT2, and DDCI3
Magnetic Coupling Parameters (in meV) of
(NH3)3-Cu(II)( µ-O)(µ-O)Cu(II) -(NH3)3

a

small CAS large CAS

basis set CASSCF CASPT2 DDCI3 CASSCF CASPT2

A 6.45 29.3 46.1 12.5 41.5
B 6.74 29.4 13.5 45.8

a Basis A consists of a (5s, 4p, 3d) basis for Cu, a (4s, 3p) basis for
O, a (3s, 2p) basis for N, and a (2s) basis for H. Basis B extends A
with an f function for Cu, ad function for O, and ap function for H.
The N basis is augmented to (4s, 3p, 1d).
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and, except for small basis sets with very few virtual orbitals,
is practically impossible. However, CASPT2 offers a relatively
cheap and rather precise way to study the magnetic interactions
in these compounds as has already been observed above for
the ionic insulators containing Mn2+ or Fe2+ ions. Although
the large number of open-shell orbitals makes it impossible to
extend the active space with relaxed CT configurations, CASPT2
based on the small CAS already gives a very reasonable
description of the magnetic interactions.

The results in Table 3 show that CASPT2 correctly repro-
duces the relative strength of the experimental magnetic coupling
parameters. A direct correlation is observed betweenJ and the
angle of the R1 ligand with the two metal centers: the larger
this angle, the larger the magnetic coupling parameter. This
confirms the suggestion of Gafford et al. that the magnetic
coupling between Cr atoms occurs basically along the Cr-R1-
Cr superexchange path. The difference in absolute values
between the theoretical and experimental estimates is probably
a combination of three factors. First, there is the fact that the
reference wave function does not include the important ligand-
to-metal CT configurations, and therefore, some electron
correlation effects are not properly treated by CASPT2. Second,
the limited treatment of the electron correlation in the geometry
optimization tends to give too long bond lengths. A more
extensive treatment would shorten them, and consequently,
stronger magnetic interactions would be obtained. Finally, the
modeling of the tpma ligand by NH3 groups could be somewhat
too crude78 and should be improved to get better agreement with
the experiment. With the present computational resources, only
the first point cannot be circumvented within the CASSCF/
CASPT2 approach; the other two could be improved in a more
detailed study of these compounds.

In summary, the CASPT2 method is able to correctly describe
ferromagnetic and antiferromagnetic couplings in some illustra-
tive examples of molecular complexes. It gives quantitative
results for molecules containing magnetic centers with a small
magnetic moment and allows a qualitative study of the magnetic
coupling for systems with larger number of unpaired electrons.

Biradicals. The CH2, CHF, CF2, CHCF3, and SiH2 biradicals
have been chosen to start with because they have been widely
studied and can be considered as benchmark systems as far as
the calculation of singlet-triplet splitting is concerned.54,79-81

Notice, however, that the singlet-triplet splitting in these
molecules does not involve the calculation of the interaction
between two localized spatially separated spin moments. Here,
we investigate the convergence of the CASPT2(g1) singlet-

triplet splitting with the size of the active space and compare
the results with the DDCI3 values. For this purpose, three
different CASSCF wave functions have been used as reference
wave functions for the perturbation calculation. In the first place,
a minimal CAS that only contains two electrons and the two
orbitals involved in the transition will be referred to as small
CAS. This wave function is also used as a reference in the
DDCI3 calculations. Second, we apply an active space that
includes (most of) the valence orbitals and the corresponding
number of electrons and is referred to as medium CAS. For
CH2, CHF, CF2, and SiH2, the CAS corresponds to a real valence
CAS (considering the F-2s orbital as a core orbital), but in the
case of CHCF3, such a space would become prohibitively large,
and a selection of the most relevant orbitals has been made by
performing a restricted active space SCF (RASSCF) calculation
in the complete valence space. A more detailed description of
this strategy to select a well-balanced complete active space is
given in ref 82. The exact specification of the medium CAS
for the five molecules considered here is as follows: CH2 and
SiH2, six orbitals and four electrons; CF2, 10 orbitals and 12
electrons; CHF, eight orbitals and 12 electrons; and CHCF3,
10 orbitals and eight electrons. The third active space (large
CAS) extends the medium CAS with a set of virtual orbitals to
ensure a variational treatment of the most important part of the
electron correlation effects. The final size of the large CAS for
all molecules is thirteen orbitals with the same number of
electrons as in the medium CAS. ANO basis sets are applied
using a (3s, 2p) contraction for H, (5s, 4p, 2d) for C and F, and
(5s, 4p, 3d) for Si.60,76 The geometries of the molecules have
been taken from ref 81.

The tendency in the singlet-triplet splitting is rather similar
for all molecules. On the basis of the minimal active space,
CASPT2(g1) correctly predicts the singlet or triplet to be lowest
in energy, and the splitting between the two states is of the
order of the experimental splitting (cf. Table 4). However, in
agreement with the findings of Garcı´a et al.,81 the DDCI3
splittings are clearly more accurate and are all within 2 kcal/
mol of the experimental values. To obtain a similar accuracy
with the CASSCF/CASPT2(g1) approach, the medium CAS is
not sufficient. The calculated singlet-triplet splittings become
closer to the DDCI3 values, but still significant differences are
found. Only by applying the large CAS as a reference wave
function for CASPT2(g1) does the singlet-triplet splittings
essentially coincide with those obtained from DDCI3 and the
experimental values. The values reported in Table 4 are only
moderately dependent on the size of the one-electron basis set.
Reducing the basis set for all atoms with one function for each
l value changes the singlet-triplet splitting by not more than 2
kcal/mol, both for CASPT2(g1) and DDCI3.

In contrast to the biradicals discussed so far, spatially well-
separated spin moments are found inR-n-dehydrotoluenes and
biverdazyl radicals, and hence, ferromagnetic or antiferromag-
netic behavior can be observed in these molecules. The magnetic
interactions ofR-4-dehydrotoluene and 1,1′,5,5′-tetramethyl-
6,6′-dioxo-3,3′-biverdazyl (see Figure 5) chosen here as repre-
sentative examples of biradicals have been studied before with
DDCI2 (R-dehydrotoluene)83 and DFT (biverdazyl radical).84

Both molecules imply a rather large number of one-electron
basis functions, which makes the application of DDCI3 rather
expensive and, in the case of the variant of the biverdazyl radical
chosen here, almost impossible at present without turning to
model structures. The geometry ofR-4-dehydrotoluene has been
taken from the DDCI2 study,83 and that of the biverdazyl radical
has been taken from X-ray data.85

Figure 4. (NH3)4-Cr-(µ-O)(µ-HCO2)-Cr-(NH3)4.

TABLE 3: CASSCF and CASPT2 Magnetic Coupling
Parameters (in cm-1) of the Doubly Bridged Binuclear
Cr(III) Complex (NH 3)4-Cr(III)( µ-R1)(µ-R2)Cr(III) -(NH3)4
for Four Different Combinations of Bridging Ligands

R1 R2 ∠Cr-R1-Cr CASSCF CASPT2 exp.76,77

OH- OH- 107.7° -2.37 -17.8 -31.4
O2- OH- 108.9° -1.67 -52.0 -137
O2- HCO2

- 139.6° -32.1 -126 -186
O2- 178.8° -54.4 -206 -450
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Table 5 lists the magnetic interaction parameterJ for two
different active spaces and gives an indication of the basis set
dependency of this parameter in the case of the dehydrotoluene
radical. The two active spaces are constructed following the
procedure discussed before for the other biradicals, that is to
say two orbitals with two electrons for the small CAS and 12
orbitals with 14 electrons for the large CAS, selecting the most
important valence orbitals by RASSCF calculations. For the
dehydrotoluene molecule, both of the CASPT2 and DDCI3
estimates are within 2 kcal/mol of the experimental value. For
the larger biverdazyl radical also, rather good agreement with
the experimental data is obtained at all levels of theory, although,
especially, the CASPT2 based on the larger CAS is in excellent
agreement with the-2.2 kcal/mol measured experimentally.
Note that the effect onJ of extra basis functions is negligible;
J is affected by not more than 0.5 kcal/mol for the CASPT2
based on the large CAS.

Conclusions

The magnetic coupling parameters in a series of compounds
have been calculated to establish the performance of CASPT2
and to compare to the experiment and to results arising from
the DDCI method. The latter method has been shown recently
to give excellent estimates of the magnetic coupling parameters
in an extensive series of compounds, including organic biradi-

cals, binuclear complexes, and ionic insulators containing
transition metals. The only drawback of the DDCI method is
the relatively large computational cost, which becomes prohibi-
tive in many interesting systems. The CASPT2 method has been
shown to be a promising alternative to DDCI to study magnetic
coupling parameters. Moreover, because of its relatively low
computational cost, CASPT2 also provides a clean alternative
to the use of density functional theory based methods which
require the use of a broken symmetry approach and exhibit a
strong dependence of the results on the particular functional
applied.36 Close agreement between CASPT2 and either experi-
ment or DDCI is obtained provided that the zeroth-order wave
function accounts for two basic mechanisms, namely, the
Anderson superexchange and, in part, the instantaneous relax-
ation of the ligand-to-metal CT configurations. For compounds
with magnetic centers withSe 1, these wave functions can be
constructed in a straightforward way. However, for larger spin
moments, the inclusion of the relaxation of the charge transfer
configurations in the reference wave function is not trivial.
Nevertheless, we found that CASPT2 based on a reference wave
function that only includes the Anderson superexchange mech-
anism reproduces all experimental trends very well. This allows
us to extend the ab initio investigations of the magnetic coupling
to more complicated cases such as those involving more than
two magnetic centers and/or elevated total spin moment. We
conclude that the CASPT2 method is a general, fast, and rather
precise method to study magnetic coupling in biradicals,
molecular complexes, and ionic insulators.
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